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The interaction of a rarefaction wave with a gradual monotonic area reduction of 
finite length in a duct, which produces transmitted and reflected rarefaction waves 
and other possible rarefaction and shock waves, was studied both analytically and 
numerically. A quasi-steady flow analysis which is analytical for an inviscid flow of 
a perfect gas was used first to determine the domains of and boundaries between four 
different wave patterns that occur a t  late times, after all local transient disturbances 
from the interaction process have subsided. These boundaries and the final constant 
strengths of the transmitted, reflected and other waves are shown as a function of 
both the incident rarefaction-wave strength and area-reduction ratio, for the case of 
diatomic gases and air with a specific-heat ratio of 3, The random-choice method was 
then used to solve numerically the conservation equations governing the one- 
dimensional non-stationary gas flow for many different combinations of rarefaction- 
wave strengths and area-reduction ratios. These numerical results show clearly how 
the transmitted, reflected and other waves develop and evolve with time, until they 
eventually attain constant strengths, in agreement with quasi-steady flow predictions 
for the asymptotic wave patterns. Note that in all of this work the gas in the area 
reduction is initially a t  rest. 

1. Introduction 
The interaction of shock waves with area changes of finite length in ducts has been 

investigated fairly thoroughly during the past three decades, by considering the wave 
motion and flow as one-dimensional. This interaction process that eventually results 
in a well-defined quasi-steady flow (at late times) is now well understood and 
documented (e.g. Kahane et al. 1954; Rudinger 1955; Chester 1960; Russell 1967; 
and especially Greatrix & Gottlieb 1982). By contrast, no work of a similar nature 
is available for the case of a rarefaction wave interacting with an area change, 
although the papers by Kahane et al. (1954), Rudinger (1955), Schultz-Grunow (1943) 
and Bannister & Mucklow (1948) contain relevant basic information. Yet, the passage 
of a rarefaction wave through an area change is a common feature of non-stationary 
gas flows encountered in engineering practice and research. For example, these flows 
occur in the piping system of reciprocating engines and pumps, in gas-transportation 
pipelines, and in shock tubes and blast-wave simulators that have an area change 
in the driver or at the diaphragm station. 

The case of a rarefaction wave (and other waves) moving in a duct with or without 
area changes can, of course, be handled routinely by well-developed mathematical 
methods. In early work the method of characteristics was employed to predict 
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non-stationary flows in ducts; for example, see the work of Bannister & Mucklow 
(1948) and Rudinger (1955). In this work the flow through constant-area duct 
segments was treated as non-stationary, and, for simplicity needed in hand calcula- 
tions, the flow across each area change between constant-area segments was treated 
simply as steady. With the advent of high-speed computers, however, modern 
gasdynamic computer codes based on the method of characteristics, finite-difference 
methods and the random-choice method now treat the flows more realistically as 
non-stationary everywhere, including each gradual area change (e.g. Warming & 
Beam 1977; Greatrix & Gottlieb 1982; Jones & Brown 1982). These general-purpose 
computer codes treat any rarefaction wave interaction with an area change as an 
integral part of the whole flow problem. They have not been applied, however, with 
the specific intent of making a thorough study of such an interaction process. 

The purpose of the present extensive study is to present basic detailed results that 
apply in general to the specific case of a rarefaction wave interacting with an area 
reduction. Special attention is devoted to understanding the nature of the transient 
flow phenomena that eventually establish a quasi-steady flow at late times, after all 
transient disturbances have subsided. A clear picture is thereby provided of the entire 
non-stationary interaction process. 

2. Analytical and numerical analyses 
2.1. Quasi-steady flow analysis 

A rarefaction wave moving through a quiescent gas toward an area reduction in a 
duct is illustrated in figure 1 .  This wave produces a flow that moves in the opposite 
direction. Depending on the magnitudes of the area-reduction ratio SJS, and the 
incident rarefaction-wave strength (or pressure ratio p J p ,  across this wave), the 
rarefaction-wave interaction with the area reduction will result in one of the four 
different postulated wave patterns shown schematically in figure 2. Transmitted and 
reflected rarefaction waves are shown in wave patterns A to D ;  an upstream-facing 
shock wave appears also in the area change in pattern B or downstream of it in pattern 
C, whereas an upstream-facing rarefaction wave appears downstream of the area 
change in pattern D .  Owing to the existence of the shock wave in patterns B and 
C, a contact surface or contact region also occurs in these patterns. 

The rarefaction-wave interaction with the area reduction is initially a non-stationary 
flow process, and the flow solution obtained from the one-dimensional equations of 
motion for this interaction will be numerical (see 52.2). However, as local transient 
disturbances subside through wave reflection and coalescing processes, the flow will 
become quasi-steady or steady. That is, the rarefaction and shock waves will 
eventually become distinct and develop constant strengths, and these waves and the 
contact region will eventually separate developed regions of steady flow. The solution 
for the quasi-steady flow for patterns A to D can be obtained analytically, and quite 
readily, as outlined herein. 

The concept and application of a quasi-steady flow analysis are fairly well known 
in gasdynamics (e.g. Rudinger 1955). However, they are not presented in Rudinger’s 
book or elsewhere in a form suitable for convenient utilization in obtaining all of the 
flow properties of the quasi-steady waves and steady-flow regions for patterns A to 
D of the present paper. Consequently, the method of solution for pattern A will be 
presented briefly for illustrative purposes. 

For an inviscid flow of a perfect gas, the flow properties in regions 1 and 7 ,  on either 
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in a duct. 

FIGURE 2. Four different schematic quasi-steady wave patterns for the interaction of a 
rarefaction wave with an area reduction in a duct. 

side of the transmitted rarefaction wave (see pattern A in figure 2), are connected 
by an equation for a negatively sloped characteristic line crossing a simple expansion 
wave (Rudinger 1955), 2 

-a,-%, = - a1 (1) Y-1 Y--l 

2 

(with u1 = 0) ,  and the isentropic relations 

The symbols p ,  T ,  a, p,  u and y denote static pressure, temperature, sound speed, 
density, flow velocity and specific-heat ratio respectively. If the strength of the 
transmitted rarefaction wave p,/pl  is specified for convenience instead of pJp1 of 
the incident rarefaction wave, all of the flow properties in region 7 can then be 
obtained directly from (1) and (2), because the flow properties in region 1 are known 
initial conditions. Note that the flow velocity in region 1 is taken to be zero in the 
present work. 
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For a steady one-dimensional isentropic flow through the area reduction, from 
region 7 to region 3, the continuity and energy equations (Rudinger 1955) 

P3 u3 sd = P7 u7 (3) 

h3+!& = h7+&;, (4) 
along with the sound-speed relation a2 = yRT = yp /p ,  and the enthalpy h = C, T = 
yRT/ ( y - 1 ) , yield 

The symbols h, R and M denote the specific enthalpy, gas constant and flow Mach 
number ula, respectively. Because M7 is dictated by previously determined 
information (u, and a,) and the duct cross-sectional areas upstream (Xu) and 
downstream (8,) of the area reduction are specified, Ma can be obtained from the 
latter part of (5) .  Values for p3, G, a3, and p3 then follow from the former part of 
(5 ) ,  and u3 is obtained from the product a3 M3.  

Region 2 lies behind the incident rarefaction wave and ahead of the reflected 
rarefaction wave (see pattern A in figure 2). The flow properties in this region are 
connected to region 1 by an equation for a negatively sloped characteristic line, 

2 
-a2-u2 = - a,, 

2 

Y-1 Y--l 

and to region 3 by a similar equation for a positively sloped characteristic line, 

2 
-a,+u, = - a3 + us. 

2 

Y--l Y-1 (7) 

These two equations yield a2 and u2, and p,, T, and pz then follow from a set of 
isentropic expressions like those given by (2). This completes the method of solution 
for obtaining all flow properties and wave strengths for pattern A .  

The procedure for obtaining a complete set of flow properties for wave patterns 
A to D,  for some specific area-reduction ratio, is now outlined. The solution for 
pattern A covers a limited range of strengths of the incident and transmitted 
rarefaction waves. For the transmitted wave, the ratio p,/p,  takes on values from 
unity, for which there is no flow and all waves are Mach waves, to a minimum value 
of(p,/pl)min = (2 / {y+ 1})2~l(y-1),whenthetransmittedwaveisstrongest. At(p7/p,},i, 
the tail of the transmitted rarefaction wave has become vertical, as shown in pattern 
B of figure 2, and the flow entering the area change from region 7 is just sonic with 
M7 = - 1. For pattern A ,  the pressure ratio p,/pl is first decreased in small increments 
from unity to its minimum value (p7/pl}min, and the flow properties in regions 2 and 
3 are then calculated a t  each step by using the previously described method and 
equations. Note that if p7 /p ,  is specified, the flow properties in regions 2, 3 and 7 
(including p2 /p l )  can be obtained directly, whereas, if p,/pl was specified initially, the 
flow properties (including p7/p l )  could be determined only by iteration. 

For pattern B, an upstream-facing shock wave with a strength p J p ,  greater than 
unity is stationary in the area change. For the analysis its location can be changed 
in small increments from the smallest area 8, where p,/p6 = 1 to the largest area 8, 
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where p5/p,  = @5/p6}ma,. This procedure is again convenient to obtain the flow 
properties (including p 2 / p l )  without an iteration. The sudden change in the flow 
properties across this stationary shock wave, from supersonic to subsonic flow 
conditions, has to be included in the calculations by using the well-known Rankine- 
Hugoniot relations (Rudinger 1955). The flow properties in regions 2, 3 and 4 of 
pattern B are then calculated in a manner similar to that for pattern A .  The contact 
surface separating regions 3 and 4 is handled easily because both the pressure and 
flow velocity are unchanged across it. 

For pattern C, an upstream-facing shock wave that is swept downstream by the 
oncoming supersonic flow occurs with a contact surface swept downstream of the area 
change. In the calculations the strength p 5 / p 6  of this downstream-swept shock wave 
is reduced in small increments from its maximum value @5/p6}max to its minimum 
values of unity when this shock wave becomes a Mach wave. The flow-property 
changes across this shock wave and the velocity at which i t  is swept downstream 
follow directly from the Rankine-Hugoniot relations. 

Finally, for pattern D, an upstream-facing rarefaction wave that is swept down- 
stream by the oncoming supersonic flow replaces the downstream-swept shock wave, 
and a contact surface does not appear. In the calculations the strength p 3 / p 6  of this 
downstream-swept rarefaction wave is reduced incrementally from its upper value 
of unity, for the case of a Mach wave, to its minimum value of zero, for which this 
rarefaction wave is strongest. The flow-property changes across this downstream-swept 
rarefaction wave are obtained by using expressions like those given by (1) and (2). 
Note that, if p 3 / p s  is reduced to zero, p , / p ,  also goes to zero, and the incident 
rarefaction wave becomes a complete expansion wave with its fan of characteristics 
spread out to the maximum extent. It would then be much wider spread than 
sketched in pattern D of figure 2. 

From the previous comments it should be clear that the boundaries between 
patterns A ,  B, C and D are defined in the following manner. For the boundary 
between patterns A and B, the tail of the transmitted rarefaction wave of pattern 
A becomes vertical, and the flow in region 7 which enters the area change becomes 
sonic ( M ,  = - l),  whereas the stationary shock wave of pattern B is only a Mach wave 
at the flow entrance to the area change (8”). For the boundary between patterns B 
and C, the stationary shock wave of pattern B and the downstream-swept shock wave 
of pattern C become stationary at  the flow exit of the area change (Sd), where they 
have the same strength. Finally, for the boundary between patterns C and D, the 
downstream-swept shock and rarefaction waves of patterns C and D respectively 
become Mach waves. Hence, at  each boundary the adjacent wave patterns have the 
same limiting pattern. 

2.2. Non-stationary $ow analysis 
The continuity, momentum and energy equations for one-dimensional non-stationary 
inviscid gas flows, in conservation form, are (Rudinger 1955) 

a a 1 dS 
at ax S dx 
-((pu)+-(pu2+p) = ---((Pu”, 

a a 1 d S  
- ( e )  +- (ue + up)  = --- (ue + u p ) ,  
at ax S dx 

(9) 
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where the new symbols x, t ,  S and e denote distance, time, duct cross-sectional area 
and total energy per unit volume respectively. The total energy is the sum of the 
internal energy pC,T and kinetic energy +pu2, which is often expressed as 
p / ( y -  1 )  ++pu2. This set of equations is completed by the thermal equation of state 
for a perfect gas, that is p = pRT. 

For the solution of the problem of a rarefaction wave interacting with an area 
reduction in a duct, the specific variation of area S(x)  is required. In  the present work 
the area change between two constant-area ducts of upstream area S, and downstream 
area 8, is specified by 

~ ( x )  = s d  exp (t In k) (I  - cos 7)) , 

where x = 0 a t  the large end (&) and x = 1 at the small end (S,). This particular 
area transition is monotonic and smooth, and applies for both an enlargement and 
a reduction. It was chosen because 

1 d S  7~ 7CX _ _  dx - - - 21 In e) sin - 
1 

is a symmetric, sinusoidal distribution, which is advantageous over asymmetrical 
variations in reducing numerical noise in the computed flow properties. 

Equations (8)-(12) are solved numerically in the present study, by using the 
random-choice method (RCM) invented by Glimm (1965) and first applied by Chorin 
(1976), which is well suited for solving such problems. Shock waves and contact 
surfaces with sharp fronts are well defined by this method, unlike finite-difference 
methods for which they are smeared out over many mesh zones, owing to the effects 
of explicit artificial and implicit numerical viscosities. The operator-splitting 
technique introduced to the RCM by Sod (1977), in order that one-dimensional flow 
problems with area changes could be solved, is also used in this study. Note that the 
RCM is a first-order, explicit numerical scheme that  repeatedly solves a Riemann or 
shock-tube problem between two grid points, and details of this method can be found 
in the work of Glimm (1965), Chorin (1976), Sod (1977) and Saito & Glass (1979). 

3. Results and discussion 
3.1. Quasi-steady flow 

For a rarefaction wave interacting with an area reduction in a duct, four different 
wave patterns shown schematically in figure 2 were postulated. Based on the 
quasi-steady flow analysis presented in 82.1, the domains and boundaries for patterns 
A ,  B ,  C and D can be calculated as a function of the pressure ratiop,/p, of the incident 
rarefaction wave and the area-reduction ratio SJS,. The results for perfect air and 
diatomic gases with y = $ are given in figure 3. Addition results are presented in figure 
4 for the cases of perfect monatomic gases with y = Q (solid lines) and a perfect 
polyatomic gas with y = % (dashed lines), in order to show the effects of different 
specific-heat ratios. 

The boundaries for each different gas have a confluence point at the top of the graph 
where S,/S, = 1 and p,/p,  = (2 / ( y+  l))zr’(Y-l). From this point they separate and 
run downward, and each one ends a t  a different point on the bottom of the graph 
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FIGURE 3. Domains and boundaries for wave patterns A ,  B,  C and D for the interaction of a 
rarefaction wave of incident pressure ratio p 2 / p ,  with an area reduction of ratio S,/S,, for the case 
of perfect air and diatomic gases with y = 2. 

where s u / s d  = 0. The values of p2 /p l  at these three end points are 

for the boundaries between patterns A and B ,  B and C, and C and D respectively, 
which can be obtained from the appropriate quasi-steady flow equations by taking 
the limit as s U / 8 d + 0 .  Consequently, for any given area ratio in the range 
0 < s u / s d  < 1 ,  the quasi-steady flow analysis predicts that all four wave patterns 
can occur, depending on the incident rarefaction-wave strength p2 /p l .  For the 
limiting and trivial case when SJS, = 1 (no area change), only patterns A and D 
are possible. For the case of pattern A the incident rarefaction wave merely becomes 
the transmitted wave, and no reflected wave occurs. In the case of pattern D, the 
first part of the incident rarefaction wave from its head (zero flow) to its ‘centre ’ where 
one of its characteristic lines is vertical (sonic flow) becomes the transmitted wave, 
the latter part from its centre to its tail (where the flow is supersonic) becomes the 
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FIGURE 4. Domains and boundaries for wave patterns A ,  B, G and D for the interaction of a 
rarefaction wave of incident pressure ratiop.Jp, with an area reduction of ratio SJS,, for the cases 
of perfect monatomic gases with y = 8 (-) and a perfect polyatomic gas with y = M (- - - -). 

upstream-facing but downstream-swept rarefaction wave, and no reflected wave 
exists. 

The strengthp,/p, of the transmitted rarefaction wave is shown in figure 5 ,  in terms 
of the incident rarefaction-wave strength p2/p1 and area-reduction ratio Su/X,, for 
perfect diatomic gases and air with y = 3 .  Within a triangular-shaped region, 
corresponding to the case of wave pattern A ,  p,/p, is a unique function of pz/pl and 
S,/S,. Along the line on the left-hand side where su/Sd = 1 ,  for the case of no area 
change, the strength of the transmitted rarefaction wave is, of course, equal to that 
for the incident rarefaction wave. For all other area-reduction ratios within the 
triangular region p,/pl is less than p2/pl, showing that the transmitted rarefaction 
wave is stronger than the incident rarefaction wave. The transmitted wave is 
strongest a t  the right-hand side where Su/S, = 0, that is, the duct of area S d  is 
infinitely larger than the duct of area S,. As p2/p1 is reduced from unity, for a given 
area ratio, p,/pl decreases from unity within the triangular region and eventually 
reaches its lower limit of (2 / { y+  l})2y’(y-1) or 0.279 (if y = I) for the bottom border 
of the triangular region. Further reductions in p,/p,, which will produce wave 
patterns B, C and then D ,  do not alterp,/p, from its lower limit, since the transmitted 
rarefaction wave cannot accelerate the flow beyond its sonic speed a t  the flow 
entrance to the area change. This is similar to the case of a steady flow from a 
constant-pressure reservoir becoming choked a t  the nozzle throat if the downstream 
pressure is lowered sufficiently. 

The strength pJp, of the reflected rarefaction wave is shown in figure 6, as a 
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FIQURE 5. Strength of the transmitted rarefaction wave p , / p l  shown as a function of the incident 
rarefaction-wave strength pJp l  and area-reduction ratio SJS,,, for perfect air and diatomic gases 
with with y = H. 

function of both p2 /p l  and Xu/&,. Also, the boundaries corresponding to wave 
patterns A to D are indicated by the dashed lines. For each given area ratio in the 
range 0 < SJS, < 1, a continuous variation in p , /p2  from unity to zero occurs 
through regions A to D as p 2 / p ,  decreases from unity to zero. Over most of the range 
of SJS, not too close to zero, p , / p ,  is larger than p , lp ,  and the reflected wave is 
weaker than the incident wave. The reverse situation occurs for very small values 
of Su/Sa. For the case of no area change when Su/Sa = 1, the reflected rarefaction 
wave is not present, because p , / p ,  = 1, and only patterns A and D are possible as 
described previously. On the other hand, for the case when Su/Sa = 0, one can show 
that p 3 / p 2  = [2 - (111/p2)(Y-1)/2Y]2Y/(y-1) and only patterns A and B can occur. This 
corresponds to the case for which the incident wave is reflected from the closed end 
of a duct, since the flow from the duct of area Xu into the infinitely larger duct of 
area S, has a negligible effect on the wave-reflection process. However, this relatively 
minor flow from the small to the large duct can be entirely subsonic and shock-wave 
free, as for pattern A ,  or partly supersonic and then subsonic after the stationary 
shock wave, as for pattern B. 

It is interesting to observe that changes in p , / p ,  produce relatively small changes 
in p 3 / p 2  in region C of figure 6, whereas they produce relatively large changes in p , / p ,  
in region D. This behaviour is a direct result of the presence of the downstream-swept 
shock wave in pattern C and the downstream-swept rarefaction wave in pattern D. 
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FIGURE 6. Strength of the reflected rarefaction wave p J p ,  shown as a function of the incident 
rarefaction-wave strength p,/p, and area-reduction ratio S,,/S,, for perfect air and diatomic gases 
with y = 5. 

The shock wave causes an increase in pressure in region 3 of the wave pattern, whereas 
the rarefaction wave causes a decrease in pressure. 

Finally, the strengthp,/p, of the stationary shock wave in pattern B and strengths 
p,/ps and pJp, of the downstream-swept shock and rarefaction waves of patterns 
C and D respectively are shown in figure 7. For a given area ratio SJS, and 
decreasing values of p,/p,, the stationary shock wave first appears with a strength 
p,/p, = 1 a t  the lower boundary of region B, and its strength then rises monotonically 
to its maximum value at the boundary between regions B and C. For a further 
reduction in p,/p, the strength pJp, of the downstream-swept shock wave decreases 
from this maximum value to unity at  the boundary separating regions C and D. 
Thereafter, the strength p,/p, of the downstream-swept rarefaction wave decreases 
rapidly in region D to zero as p2/p, goes to zero. 

3.2. Non-stationary $ow 
Numerical results obtained by the RCM for the interaction of a rarefaction wave with 
an area reduction are now presented graphically and discussed, in order to illustrate 
how the transmitted, reflected and other waves form, evolve with time, and 
eventually attain constant strengths as they become quasi-steady, in agreement with 
the quasi-steady flow predictions for the asymptotic wave patterns. Computations 
were made for many different combinations of the incident rarefaction-wave strength 
and area-reduction ratio ; however, only a few typical results are presented here. 
Additional RCM results for perfect diatomic gases (y  = p), as well as additional 
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FIGURE 7. Strengths of the stationary shock wave ofpattern B (p6 j p 6 ) ,  and downstream-swept shock 
wave of pattern C (p5 /p6) ,  and downstream-swept rarefaction wave of pattern D(ps/p6) ,  for perfect 
air and diatomic gases with y = %. 
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quasi-steady flow solutions for perfect monatomic gases (y  = i), are presented 
graphically elsewhere (Gottlieb & Saito 1983). 

The numerical results obtained with the RCM are given in figures 8-12, in the form 
of separate sets of spatial distributions for non-dimensional pressure p/pl, flow 
velocity u/a,, density p/pl and entropy (s-s,)/R. Each successive distribution is 
displaced upward from the previous one, so that the effect of a time-distance diagram 
is produced. The non-dimensional time interval between adjacent distributions is 
given by AT = a, At/l, and the non-dimensional value of AT for each base is given in 
the caption of each figure. The location of the area reduction of length 1 is shown by 
the two vertical dashed lines. The incident rarefaction wave is initially specified in 
the bottom distribution of each set, just to the left of the area reduction. In each 
case it is distributed over a distance of five-sixths of the length of the area change 
or &!. The initial flow velocity is specified to change linearly over this spatial interval, 
and the other flow properties can be derived from this variation and the specification 
of the incident rarefaction-wave strength p2/pl. Such a specification of the spatial 
properties of the incident rarefaction wave means that it was originally a centred 
rarefaction wave at  some earlier distance and time. The flow field was computed with 
720 grid zones, of which 60 were allocated to the area reduction and 50 are allocated 
to the incident rarefaction-wave profile. 

The first set of numerical results for the pressure and flow velocity appears in figure 
8, for the case ofp2/pl = 0.65 and SJS, = 0.75, corresponding to a point in the upper 
domain for pattern A in figure 3. The incident rarefaction wave is shown in the bottom 
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FIGURE 8. Spatial distributions of pressure (a )  and flow velocity ( b )  for the interaction of a 
rarefaction wave with an area reduction (p , /p ,  = 0.65, S,,/S, = 0.75, AT = 0.34, pattern A ) .  Note 
that 1 is the length of the area reduction and Ar = a, At11 is the non-dimensional time between 
successive spatial distributions. 

distribution, just prior to its impingement on the area reduction. Its subsequent 
interaction can be observed in the following distributions, where the formation and 
evolution of the transmitted and reflected rarefaction waves, as well as the eventual 
development of steady subsonic flow in and on both sides of the area change, can be 
clearly seen. For the present case of a small area reduction, the reflected rarefaction 
wave is quite weak, relative to the incident wave, and barely noticeable. It would 
have been stronger and more visible if &/Sd had been lower than 0.75. Note that 
the steady flow in the area change at later times decelerates (velocity becomes less 
negative) and its pressure rises as the gas moves from right to left through an area 
enlargement. This is the expected flow behaviour for such a subsonic diffuser. 

Other numerical results for different values of p,/p, and S , / s d ,  corresponding to 
points in the upper part of the domain of pattern A ,  for which s , / s d  > 0.45, are' 
similar to those given in figure 8. However, numerical results for the lower part of 
this domain showed one interesting anomaly. A compression wave that might be 
initially smooth or have one or more coalescing shocks was found to form in the area 
change and then follow the tail of the transmitted rarefaction wave. This can be seen 
in the second set of results given in figure 9, for whichp,/p, = 0.80 and s u / s d  = 0.25. 
In this case the pressure change (p-pl)/pl across this compression wave with two 
coalescing shocks is about 0.08, which is not negligible when compared to the pressure 
changes of 0.20 and 0.35 across the incident and transmitted waves, respectively. 

When the results shown in figure 9 were extended to later times (not shown), it  
was found that the compression wave with the two shocks steepened into one shock 
wave with one sharp front. This shock wave also overtook and interacted with the 
transmitted rarefaction wave. It was obvious that this interaction process would 
proceed slowly with time, continuously eroding the tail of the rarefaction wave and 
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FIQURE 9. Spatial distributions of pressure (a)  and flow velocity (b )  for the interaction of 
rarefaction wave with an area reduction (p2/p ,  = 0.80, SJS, = 0.25, AT = 0.34, pattern A ) .  

a 

simultaneously reducing the strength of the overtaking shock wave, until only a 
weaker transmitted rarefaction wave is eventually left (Bremner, Dukowicz & Glass 
1961). The final strength of this transmitted wave should then agree with the 
quasi-steady flow prediction. 

It is worth pointing out that the formation of a compression wave which results 
in a steep-fronted shock wave at the tail of a rarefaction wave that is moving into 
an area convergence is not some new phenomenon, but rather a variation of a known 
feature of spherical explosions. For example, the sudden release of a high-pressure 
sphere of gas into its surroundings not only produces an outward-moving shock wave 
and inward-moving rarefaction wave, but also an imploding shock wave a t  the tail 
of the rarefaction wave (Saito & Glass 1979). This imploding shock wave, resulting 
from a steepening compression wave owing to the spherical geometry, reflects a t  the 
origin to form the second outward-moving shock wave. In  the present problem, 
however, the final area convergence to a focus is absent. Hence, for sufficiently large 
area reductions for which a compression or shock wave forms behind the rarefaction 
wave, a transmitted rarefaction wave followed by a compression or shock wave should 
be expected. 

It is apparent from the results presented in figures 8 and 9 that the wave pattern 
that emerges at late times is pattern A .  This was also true of all other results for values 
of p , / p ,  and SJX,  that correspond to points in the domain of quasi-steady wave 
pattern A ,  even for points taken very close to the boundary to pattern B.  
Furthermore, pattern A emerges fairly quickly in the numerical results, and the wave 
strengths converge fairly rapidly to those predicted by the quasi-steady flow analysis. 
This occurs shortly after the tail of the incident rarefaction wave enters the area 
change and shortly after the tails of the transmitted and reflected rarefaction waves 
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leave the vicinity of the area reduction, after which quasi-steady flow regions of 
increasing extent begin to develop on each side ofthe area change. The flow properties 
in these growing regions, as computed by the RCM, are generally within 5 yo of the 
quasi-steady flow predictions by the time that the tail of the last wave leaving the 
area change has moved approximately two area-transition lengths (21) away from the 
area change, Also, at this time the strengths of the reflected and transmitted waves 
are within 5 %  of the quasi-steady flow predictions, except for the case when a 
compression or shock wave overtakes the transmitted wave. In such a case the 
strength of the transmitted wave will take a much longer time to decrease to within 
5 yo of its final quasi-steady flow prediction. 

The third set of numerical results for the pressure, flow velocity, density and 
entropy are presented in figure 10, for the case ofp,/pl = 0.45 and S,/S, = 0.40, 
corresponding to a point near the centre of the domain of pattern B. The first part 
of the incident rarefaction wave moves all of the way through the area reduction 
and establishes the transmitted rarefaction wave. The tail of this transmitted wave 
becomes stationary at the flow entrance to the area change where the flow be- 
comes sonic, and no steady-flow region develops upstream of the area change. The 
latter part of the incident rarefaction wave cannot move through the area reduction, 
against the high-speed oncoming flow that is a t  least sonic at the flow entrance to 
the area change. However, this part of the incident wave produces a low pressure 
in the area change, and thus causes the flow to accelerate from sonic to increasing 
supersonic speeds as it passes through the area change, like the flow in a supersonic 
nozzle. Any compression wave that forms at the tail of the incident rarefaction wave 
as it moves into the area reduction would also be stalled by the high-speed oncoming 
flow. Consequently, a sufficiently strong upstream-facing shock wave develops in the 
area change and eventually becomes stationary near the centre (for the present case). 
It terminates the oncoming supersonic flow and a subsonic diffuser flow then follows 
in the downstream part of the area change. The reflected rarefaction wave in the 
present example is relatively weak compared to the incident wave, but it is visible 
in the numerical results. 

During the formation of the upstream-facing shock wave a contact region of 
changing density and entropy is produced, which is swept downstream by the flow 
at the local flow velocity (see figures lOc, d ) .  When the upstream-facing shock wave 
is stationary in the area change, it then produces a new quasi-steady flow region with 
a constant density and entropy between the contact region and area reduction. Note 
that the large fluctuations in the entropy distributions in figure 10 ( d )  stem from the 
RCM. Small random variations in placing the upstream-facing shock wave in the area 
reduction lead to large entropy fluctuations. These random variations and thus the 
entropy fluctuations can be reduced by using a finer grid and/or a more appropriate 
random-number algorithm for the computations (Igra, Gottlieb & Saito 1983). 

Numerical results computed for other incident rarefaction-wave strengths and 
area-reduction ratios corresponding to points in the domain of pattern B were similar 
to those given in figure 10. In each case the wave pattern that emerged at late times 
was always pattern B ,  even for points taken next to the boundaries to patterns A 
and C. Furthermore, quasi-steady wave pattern B emerges fairly quickly in the 
numerical results, but not as quickly as that for pattern A.  Shortly after the tail of 
the incident wave enters the area reduction, the tail of the reflected wave leaves the 
area change and the upstream-facing shock wave becomes stationary. Shortly 
thereafter the flow becomes quasi-steady, with the wave amplitudes and the flow 
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PIP1 = 1 

FIGURE 10. Spatial distributions of pressure (a) ,  flow velocity ( b ) ,  density ( c )  and entropy (d) for 
the interaction of a rarefaction wave with an area reduction (pB/pl = 0.45, SJS, = 0.40, AT = 0.48, 
pattern B) .  
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properties in the quasi-steady regions being within 5 yo of the predicted quasi-steady 
values. 

The fourth set of numerical results for the pressure, flow velocity, density and 
entropy are presented in figure 11, for the case of p J p l  = 0.15 and Xu/#, = 0.20, 
corresponding to a point in the lower part of the domain of pattern C. As in the last 
case, the first part of the incident rarefaction wave moves through the area reduction 
and establishes the transmitted rarefaction wave with a stationary tail at the flow 
entrance to the area change. The centre part of the incident wave also reduces the 
pressure in the area reduction, such that an upstream-facing shock wave with a 
contact region is formed. However, in this case the additional, latter part of the strong 
incident rarefaction wave slowly overtakes the upstream- facing shock wave. This 
wave-interaction process results in a gradual weakening of the upstream- facing shock 
wave and the gradual disappearance of the overtaking rarefaction wave (Glass, 
Heuckroth & Molder 1961). As the shock wave weakens it is swept downstream by 
the oncoming supersonic flow, as shown in figure 11. For this particular case the wave 
interaction process will end when the tail of the incident rarefaction wave eventually 
overtakes the shock wave (not shown in the figure). A weaker upstream-facing but 
downstream-swept shock wave will then emerge with a constant strength. This was 
shown to be true for the present case, in spite of the lengthy time and high cost of 
the numerical calculations. 

It should be clear from the numerical results given in figure 11 and their discussion 
that quasi-steady wave pattern C will eventually be established for the present case. 
Similar results were obtained for other incident rarefaction-wave strengths and 
area-reduction ratios corresponding to points in the domain of pattern C. The time 
required for pattern C to  be established, however, is long relative t o  those times to  
establish patterns A and B, because the wave interaction process for the overtaking 
of the upstream-facing shock wave by the latter part of the incident rarefaction wave 
proceeds relatively slowly. 

The final set of numerical results are presented in figure 12, for the case of 
p, /p ,  = 0.020 and SJS, = 0.25, corresponding to a point in the bottom part of the 
domain of pattern D. These results are typical for all other incident rarefaction-wave 
strengths and area-reduction ratios corresponding to points in the domain of pattern 
f). The flow development with time is similar to the previous case for pattern C ,  with 
one important exception. The incident rarefaction-wave strength is now sufficiently 
strong that the wave interaction process for the overtaking of the upstream-facing 
shock wave by the latter part of the incident rarefaction wave proceeds slowly to a 
different conclusion. The shock wave will gradually be reduced to a Mach wave (or 
eliminated) in the interaction process and a weaker upstream-facing rarefaction wave 
will eventually emerge with a constant strength (Glass et al. 1961). This is not shown 
in the results of figure 12, owing to the excessive time and cost required to continue 
the numerical calculations. However, i t  is clear from the figure that the shock-wave 
strength is diminishing with time and this shock wave is being swept downstream 
more quickly. 

It is fairly obvious from these results and their discussion that quasi-steady wave 
pattern D will eventually be established when the incident rarefaction-wave strength 
and area-reduction ratio correspond to any point in the domain of wave pattern D. 
The time required for pattern D to be established, however, is long relative to that 
to establish pattern C, and even longer relative to those to establish patterns A and 
B. Note that the reason for the increase in the times to establish patterns A, B, C 
and D is that  a sequence of events always occurs, Pattern A is always formed first. 
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FIGURE 11. Spatial distributions of pressure (a), flow velocity ( b ) ,  density (c) and entropy (a!) for 
the interaction of a rarefaction wave with an area reduction (p2/p l  = 0.15, SJS, = 0.20, Ar = 0.49, 
pattern C). 
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FIQURE 12. Spatial distributions of pressure (a ) ,  flow velocity (b) ,  density (c) and entropy ( d )  for 
the interaction of a rarefaction wave with an area reduction (p2/p l  = 0.020, SJS, = 0.25, 
AT = 0.62, pattern D) .  
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FIGURE 13. Characteristic time 7, = a, t , / l  versus incident rarefaction-wave strength p,/p, for the 
initially non-stationary flow eventually to become almost quasi-steady (within 5 yo). 

If the rarefaction wave is sufficiently strong, pattern A is changed into pattern B, 
pattern B is then altered to pattern C, and pattern D finally evolves from 
pattern C. 

The characteristic time for the non-stationary flow to become quasi-steady and 
establish pattern A ,  B, C or D has been discussed only qualitatively. In order to obtain 
quantitative results, a definition for this characteristic time is needed. Let the 
characteristic time t ,  be defined as the time interval measured from when the incident 
rarefaction wave first encounters the area reduction until the non-stationary flow 
properties in ' quasi-steady ' flow regions between distinct waves are within 5 % of the 
quasi-steady flow predictions. Based on this definition, the non-dimensional charac- 
teristic time 7, = a,t,/l  obtained from the numerical results are shown versus the 
incident rarefaction-wave strength in figure 13. The characteristic times (shown as 
a banded region) increase for stronger incident rarefaction waves or decreasing values 
of p,/p,. This should be expected because a stronger rarefaction wave with a wider 
fan of characteristics would take longer to complete its interaction with the area 
reduction. 

The characteristic times are presented in the form of a banded region rather than 
a single curve or curves for the following two reasons. Firstly, the choice of a 
characteristic time from numerically predicted results for the non-stationary flow 
properties to come within 5% of the quasi-steady flow prediction is somewhat 
arbitrary, because the numerical results contain numerical noise or random fluctua- 
tions typical of the RCM. Hence precise values could not be obtained in the present 
work. Finally, the characteristic times were found to be weakly dependent on the 
area-reduction ratio, which could not be determined with precision from the 
numerical results. However, the trend was that characteristic times were always 
slightly longer for more severe area reductions, for a given value of p2 /p1 .  

For the numerical results presented in figures 8-12 the spatial extent of the incident 
rarefaction wave was always taken to be five-sixths of the length of the area 
reduction. When the spatial extent of the incident wave was decreased, it was found 
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that the transient-flow behaviour did not change appreciably and the time to 
establish a particular pattern did not become significantly shorter. When the spatial 
extent was increased, however, i t  was found that the transient-flow behaviour was 
similar but extended proportionally in time. 

4. Concluding remarks 
The interaction of rarefaction waves with gradual, monotonic area reductions in 

ducts has been studied successfully with two complementary analyses. The quasi- 
steady flow analysis that describes the flow behaviour at late times was instrumental 
in establishing the asymptotic wave patterns, including the asymptotic values of the 
quasi-steady flow properties and the asymptotic strengths of the transmitted, 
reflected and other waves, as a function of the incident rarefaction-wave strength and 
area-reduction ratio. The non-stationary flow analysis was necessary for determining 
the transient flow behaviour from early to late times and showing how the quasi-steady 
flow was eventually established. The random-choice method was found to be excellent 
for solving this non-stationary flow problem. 

The non-stationary flow analysis showed that the asymptotic wave patterns were 
established very rapidly for pattern A ,  quite rapidly for pattern B, and very slowly 
for pattern c! and D (see figure 13). Consequently, the quasi-steady flow analysis would 
give a good estimate of the flow properties and the strengths of the transmitted, 
reflected and other waves at fairly early times for patterns A and B,  but not for 
patterns C and D. For the cases of patterns C and D, or when a detailed study of 
the transient wave behaviour is needed, the non-stationary flow analysis is required 
to obtain accurate flow-field calculations. 

In the present work the flow in the duct and area change has been assumed inviscid 
and one-dimensional for simplicity. The resulting flow calculations are, therefore, not 
always good approximations for actual flows in ducts. For example, actual flows 
through a large or rapid increase in area are normally two-dimensional with a 
thickening boundary layer, flow separation from the walls, and oblique upstream- 
facing shock waves if the flow is initially supersonic. Also, because the gas has been 
assumed perfect, real-gas effects like liquefaction a t  low temperatures behind strong 
rarefaction waves have been neglected. The reader is reminded of such limitations 
on the present work, even though these limitations are not given here in detail mainly 
for the sake of brevity. 

Note that the complementary analytical and numerical study of the interaction 
of a rarefaction wave with an area enlargement has recently been completed, and it 
is available as a UTIAS report (Igra et al. 1983). 
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